organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-({[6-(4-Chlorobenzyl)-4-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenylsydnone

Hoong-Kun Fun,^a*‡ Madhukar Hemamalini,^a Nithinchandra^b and Balakrishna Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 28 February 2011; accepted 1 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.154; data-to-parameter ratio = 22.0.

In the title syndone (1,2,3-oxadiazol-3-ylium-5-olate) compound, $C_{21}H_{16}ClN_5O_4S$, the dihedral angle between the benzene and oxadiazole rings is 55.62 (11)° and that between the triazine and the chloro-substituted phenyl rings is 82.45 (9)°. There is an intramolecular C-H···S hydrogen bond, which generates an S(5) ring motif. In the crystal, inversion dimers linked by pairs of C-H···O hydrogen bonds generate $R_2^2(20)$ loops. The dimers are connected by C-H···N and C-H···O hydrogen bonds.

Related literature

For applications of sydnones, see: Rai *et al.* (2008); Jyothi *et al.* (2008).

Experimental

Crystal data C₂₁H₁₆ClN₅O₄S

 $M_r = 469.90$

a = 6.4604 (1) Å b = 10.1634 (2) Å c = 16.9901 (4) Å $\alpha = 105.264 (1)^{\circ}$ $\beta = 92.103 (1)^{\circ}$ $\gamma = 97.363 (1)^{\circ}$

Triclinic, $P\overline{1}$

Data collection

Bruker SMART APEXII CCD	
area-detector diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2009)	
$T_{\rm min} = 0.828, T_{\rm max} = 0.959$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	290 parameters
$wR(F^2) = 0.154$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
6389 reflections	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

V = 1064.44 (4) Å³

Mo $K\alpha$ radiation

 $0.62 \times 0.39 \times 0.13 \text{ mm}$

21841 measured reflections

6389 independent reflections 4781 reflections with $I > 2\sigma(I)$

 $\mu = 0.32 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.020$

7 - 2

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7B \cdots O2^{i}$	0.97	2.52	3.429 (3)	157
$C11 - H11A \cdot \cdot \cdot S1$	0.96	2.12	2.7577 (17)	122
$C11 - H11B \cdot \cdot \cdot N1^{ii}$	0.96	2.36	3.066 (2)	130
$C11 - H11B \cdot \cdot \cdot N2^{ii}$	0.96	2.40	3.0304 (19)	123
$C11-H11C\cdots O1^{iii}$	0.96	2.07	3.021 (2)	169

Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y, z; (iii) -x + 2, -y, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5811).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.

Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

Acta Cryst. (2011). E67, o820 [doi:10.1107/S1600536811007689]

4-({[6-(4-Chlorobenzyl)-4-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenylsydnone

H.-K. Fun, M. Hemamalini, Nithinchandra and B. Kalluraya

Comment

Sydnones (1,2,3-oxadiazol-3-ylium-5-olates) are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities being reported (Rai *et al.*, 2008). Recently sydnone derivatives were found to exhibit promising anti-microbial properties (Jyothi *et al.*, 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 6-(4-chlorobenzyl)-4-methyl-3- sulfanyl-1,2,4-triazin-5(4*H*)-one with 3-aryl-4-bromoacetylsydnones yielded *S*-substituted triazinone derivatives (Jyothi *et al.*, 2008).

In the title compound (Fig. 1), the rings A (C16–C21), B (N4/N5/O4/C14–C15), C (N1/N2/N3/C8–C10) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 55.62 (11)°, A/C = 83.22 (10)°, A/D = 49.75 (11)°, B/C = 87.81 (9)°, B/D = 8.97 (10)° and C/D = 82.45 (9)°.

In the crystal (Fig. 2), symmetry-related molecules are linked into centrosymmetic dimers via pairs of intermolecular C—H···O hydrogen bonds, generating an $R^2_2(20)$ ring. Furthermore, these dimers are connected via C—H···N and C—H···O hydrogen bonds. There is an intramolecular C—H···S hydrogen bond, which generates an S(5) ring motif.

Experimental

To a mixture of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 6-(4-chlorobenzyl)-4-methyl-3-sulfanyl-1,2,4-triazin-5(4*H*)-one (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2-3hours. The solid product separated was filtered and dried. It was then recrystallized from ethanol. Colourless plates of (I) were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5 U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2. The crystal packing of the title compound (I).

4-({[6-(4-Chlorobenzyl)-4-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenyl-1,2,3-oxa-diazol-3-ylium-5-olate

Crystal data	
C ₂₁ H ₁₆ ClN ₅ O ₄ S	Z = 2
$M_r = 469.90$	F(000) = 484
Triclinic, P1	$D_{\rm x} = 1.466 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.4604 (1) Å	Cell parameters from 9469 reflections
b = 10.1634 (2) Å	$\theta = 2.5 - 30.3^{\circ}$
c = 16.9901 (4) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\alpha = 105.264 \ (1)^{\circ}$	T = 296 K
$\beta = 92.103 \ (1)^{\circ}$	Plate, colourless
$\gamma = 97.363 (1)^{\circ}$	$0.62\times0.39\times0.13~mm$
$V = 1064.44 (4) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	6389 independent reflections
Radiation source: fine-focus sealed tube	4781 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$
φ and ω scans	$\theta_{\text{max}} = 30.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -9 \rightarrow 9$
$T_{\min} = 0.828, T_{\max} = 0.959$	$k = -14 \rightarrow 14$
21841 measured reflections	$l = -24 \rightarrow 23$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0757P)^2 + 0.3213P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$

0 restraints

$$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.62801 (16)	0.17208 (7)	-0.44701 (4)	0.0927 (3)
S1	0.74666 (7)	0.42674 (5)	0.10616 (3)	0.04942 (14)
01	0.8261 (2)	-0.00776 (14)	-0.09214 (9)	0.0536 (3)
02	0.4372 (2)	0.37342 (15)	0.22327 (10)	0.0631 (4)
03	0.2131 (2)	0.70857 (15)	0.14094 (9)	0.0569 (4)
O4	-0.0096 (2)	0.68960 (14)	0.23895 (9)	0.0525 (3)
N1	0.3637 (2)	0.14727 (17)	-0.05789 (10)	0.0455 (3)
N2	0.4389 (2)	0.26204 (16)	0.00528 (9)	0.0432 (3)
N3	0.76804 (19)	0.18731 (14)	0.00212 (8)	0.0357 (3)
N4	-0.0422 (3)	0.61324 (17)	0.29404 (10)	0.0513 (4)
N5	0.1021 (2)	0.53269 (14)	0.28321 (9)	0.0391 (3)
C1	0.6273 (3)	-0.0406 (2)	-0.28017 (12)	0.0538 (5)
H1A	0.7109	-0.0981	-0.2639	0.065*
C2	0.6816 (4)	0.0139 (2)	-0.34463 (13)	0.0614 (5)
H2A	0.8010	-0.0068	-0.3715	0.074*
C3	0.5567 (4)	0.0987 (2)	-0.36822 (12)	0.0573 (5)
C4	0.3787 (4)	0.1282 (2)	-0.33058 (13)	0.0625 (6)
H4A	0.2938	0.1839	-0.3481	0.075*
C5	0.3265 (4)	0.0743 (2)	-0.26612 (13)	0.0559 (5)
H5A	0.2063	0.0950	-0.2398	0.067*
C6	0.4501 (3)	-0.01022 (17)	-0.23998 (11)	0.0429 (4)
C7	0.3994 (3)	-0.05628 (19)	-0.16429 (12)	0.0491 (4)
H7A	0.2491	-0.0782	-0.1632	0.059*
H7B	0.4621	-0.1381	-0.1645	0.059*
C8	0.4848 (3)	0.05888 (18)	-0.09049 (10)	0.0391 (3)
С9	0.7063 (3)	0.07191 (17)	-0.06296 (10)	0.0381 (3)
C10	0.6336 (2)	0.27910 (17)	0.03115 (10)	0.0351 (3)
C11	0.9776 (2)	0.22301 (18)	0.03403 (11)	0.0415 (4)
H11A	0.9900	0.3032	0.0799	0.062*
H11B	1.0642	0.2424	-0.0074	0.062*
H11C	1.0218	0.1478	0.0515	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.5200 (3)	0.51093 (19)	0.13034 (12)	0.0451 (4)
H12A	0.5638	0.6097	0.1483	0.054*
H12B	0.4277	0.4916	0.0811	0.054*
C13	0.3992 (3)	0.46689 (17)	0.19597 (10)	0.0396 (3)
C14	0.2332 (2)	0.54916 (16)	0.22475 (10)	0.0364 (3)
C15	0.1633 (3)	0.65315 (17)	0.19282 (11)	0.0421 (4)
C16	0.0970 (3)	0.44216 (18)	0.33652 (10)	0.0433 (4)
C17	0.2718 (4)	0.4479 (2)	0.38688 (13)	0.0567 (5)
H17A	0.3960	0.5035	0.3843	0.068*
C18	0.2562 (5)	0.3678 (3)	0.44141 (15)	0.0719 (7)
H18A	0.3719	0.3693	0.4760	0.086*
C19	0.0713 (5)	0.2859 (3)	0.44518 (15)	0.0728 (7)
H19A	0.0623	0.2345	0.4832	0.087*
C20	-0.1000 (5)	0.2797 (3)	0.39297 (16)	0.0711 (6)
H20A	-0.2230	0.2223	0.3947	0.085*
C21	-0.0893 (3)	0.3590 (2)	0.33778 (13)	0.0568 (5)
H21A	-0.2043	0.3564	0.3026	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1528 (8)	0.0725 (4)	0.0568 (4)	0.0023 (4)	0.0182 (4)	0.0294 (3)
S1	0.0344 (2)	0.0530 (3)	0.0574 (3)	0.01232 (18)	0.00630 (18)	0.0057 (2)
01	0.0572 (8)	0.0531 (8)	0.0570 (8)	0.0312 (6)	0.0076 (6)	0.0144 (6)
O2	0.0748 (10)	0.0590 (9)	0.0762 (10)	0.0393 (8)	0.0273 (8)	0.0373 (8)
O3	0.0646 (9)	0.0527 (8)	0.0686 (9)	0.0205 (7)	0.0149 (7)	0.0356 (7)
O4	0.0538 (7)	0.0499 (7)	0.0648 (8)	0.0269 (6)	0.0156 (6)	0.0239 (6)
N1	0.0313 (7)	0.0565 (9)	0.0502 (8)	0.0091 (6)	0.0079 (6)	0.0148 (7)
N2	0.0291 (6)	0.0539 (8)	0.0484 (8)	0.0135 (6)	0.0088 (5)	0.0125 (7)
N3	0.0279 (6)	0.0444 (7)	0.0417 (7)	0.0138 (5)	0.0086 (5)	0.0188 (6)
N4	0.0519 (9)	0.0524 (9)	0.0575 (9)	0.0239 (7)	0.0160 (7)	0.0192 (7)
N5	0.0414 (7)	0.0383 (7)	0.0397 (7)	0.0121 (6)	0.0057 (5)	0.0105 (6)
C1	0.0592 (11)	0.0546 (11)	0.0531 (11)	0.0214 (9)	0.0073 (9)	0.0173 (9)
C2	0.0670 (13)	0.0644 (13)	0.0534 (12)	0.0163 (11)	0.0188 (10)	0.0119 (10)
C3	0.0891 (16)	0.0424 (10)	0.0387 (9)	0.0044 (10)	0.0046 (9)	0.0104 (8)
C4	0.0881 (16)	0.0538 (11)	0.0527 (11)	0.0292 (11)	0.0012 (11)	0.0184 (9)
C5	0.0625 (12)	0.0569 (11)	0.0535 (11)	0.0246 (10)	0.0068 (9)	0.0158 (9)
C6	0.0491 (9)	0.0370 (8)	0.0423 (9)	0.0083 (7)	0.0009 (7)	0.0094 (7)
C7	0.0521 (10)	0.0431 (9)	0.0537 (10)	0.0030 (8)	0.0048 (8)	0.0174 (8)
C8	0.0383 (8)	0.0416 (8)	0.0431 (8)	0.0066 (6)	0.0086 (6)	0.0204 (7)
C9	0.0416 (8)	0.0415 (8)	0.0406 (8)	0.0156 (7)	0.0108 (6)	0.0219 (7)
C10	0.0301 (7)	0.0432 (8)	0.0385 (8)	0.0127 (6)	0.0112 (5)	0.0178 (6)
C11	0.0232 (6)	0.0506 (9)	0.0503 (9)	0.0161 (6)	0.0015 (6)	0.0079 (7)
C12	0.0439 (9)	0.0445 (9)	0.0519 (10)	0.0170 (7)	0.0130 (7)	0.0155 (8)
C13	0.0411 (8)	0.0362 (8)	0.0438 (9)	0.0137 (6)	0.0056 (6)	0.0107 (7)
C14	0.0381 (8)	0.0344 (7)	0.0391 (8)	0.0107 (6)	0.0050 (6)	0.0115 (6)
C15	0.0439 (9)	0.0358 (8)	0.0501 (9)	0.0131 (7)	0.0062 (7)	0.0136 (7)
C16	0.0524 (10)	0.0429 (9)	0.0364 (8)	0.0105 (7)	0.0069 (7)	0.0117 (7)

C17	0.0613 (12)	0 0568 (11)	0 0534 (11)	0 0045 (9)	-0.0046(9)	0 0204 (9)
C18	0.0015(12) 0.0925(18)	0.0740 (15)	0.0542(12)	0.0134 (14)	-0.0123(12)	0.0280(11)
C19	0.105 (2)	0.0678 (15)	0.0543(13)	0.0086 (14)	0.0090(12)	0.0322 (11)
C20	0.0845(17)	0.0686 (15)	0.0654 (14)	-0.0010(13)	0.0162 (12)	0.0313 (12)
C21	0.0565 (11)	0.0627 (12)	0.0536 (11)	0.0033 (9)	0.0070 (9)	0.0217 (10)
-	()					
Geometric paran	neters (Å, °)					
Cl1—C3		1.744 (2)	С5—Н5	5A	0.930	00
S1-C10		1.7472 (18)	C6—C7	7	1.513	3 (3)
S1-C12		1.7960 (17)	С7—С8	3	1.503	3 (3)
O1—C9		1.2159 (19)	С7—Н7	7A	0.970	00
O2—C13		1.209 (2)	С7—Н7	7B	0.970	00
O3—C15		1.197 (2)	C8—C9)	1.468	3 (2)
O4—N4		1.370 (2)	C11—H	I11A	0.960	00
O4—C15		1.420 (2)	C11—H	I11B	0.960	00
N1—C8		1.295 (2)	C11—H	I11C	0.960	00
N1—N2		1.381 (2)	C12—C	213	1.513	3 (2)
N2-C10		1.292 (2)	C12—H	I12A	0.970	00
N3—C10		1.3655 (18)	C12—H	I12B	0.970	00
N3—C9		1.386 (2)	C13—C	214	1.463	3 (2)
N3—C11		1.4055 (19)	C14—C	215	1.422	2 (2)
N4—N5		1.3046 (19)	C16—C	217	1.377	7 (3)
N5-C14		1.358 (2)	C16—C	221	1.383	3 (3)
N5-C16		1.449 (2)	C17—C	218	1.383	3 (3)
C1—C6		1.381 (3)	C17—H	I17A	0.930	00
C1—C2		1.388 (3)	C18—C	219	1.379	9 (4)
C1—H1A		0.9300	C18—H	I18A	0.930	00
C2—C3		1.375 (3)	C19—C	220	1.377	7 (4)
C2—H2A		0.9300	C19—H	I19A	0.930	00
C3—C4		1.365 (3)	C20—C	221	1.386	5 (3)
C4—C5		1.382 (3)	C20—H	120A	0.930	00
C4—H4A		0.9300	C21—H	I21A	0.930	00
C5—C6		1.387 (3)				
C10—S1—C12		100.06 (8)	N2—C1	10—S1	121.4	7 (12)
N4-04-C15		110.86 (12)	N3—C1	10—S1	114.6	51 (11)
C8—N1—N2		120.99 (14)	N3—C1	11—H11A	109.5	5
C10—N2—N1		118.28 (14)	N3—C1	11—H11B	109.5	5
C10—N3—C9		121.17 (13)	H11A—	-C11—H11B	109.5	5
C10—N3—C11		117.25 (14)	N3—C1	11—H11C	109.5	5
C9—N3—C11		121.14 (13)	H11A—	-C11—H11C	109.5	5
N5—N4—O4		105.20 (13)	H11B—	-C11—H11C	109.5	5
N4—N5—C14		114.60 (14)	C13—C	C12—S1	113.6	61 (12)
N4—N5—C16		114.42 (14)	C13—C	C12—H12A	108.8	3
C14—N5—C16		130.97 (13)	S1—C1	2—H12A	108.8	3
C6—C1—C2		120.63 (18)	C13—C	С12—Н12В	108.8	3
C6—C1—H1A		119.7	S1—C1	2—H12B	108.8	3
C2—C1—H1A		119.7	H12A—	-C12—H12B	107.7	7
C3—C2—C1		119.2 (2)	O2—C1	13—C14	122.6	62 (16)

C3—C2—H2A	120.4	O2—C13—C12	123.39 (15)
C1—C2—H2A	120.4	C14—C13—C12	113.98 (14)
C4—C3—C2	121.4 (2)	N5-C14-C15	105.91 (13)
C4—C3—Cl1	119.07 (17)	N5-C14-C13	126.38 (14)
C2—C3—Cl1	119.57 (19)	C15—C14—C13	127.49 (15)
C3—C4—C5	119.04 (19)	O3—C15—O4	120.05 (15)
C3—C4—H4A	120.5	O3—C15—C14	136.52 (17)
С5—С4—Н4А	120.5	O4-C15-C14	103.43 (14)
C4—C5—C6	121.2 (2)	C17—C16—C21	122.79 (18)
C4—C5—H5A	119.4	C17—C16—N5	119.23 (17)
С6—С5—Н5А	119.4	C21—C16—N5	117.87 (16)
C1—C6—C5	118.58 (18)	C16—C17—C18	117.6 (2)
C1—C6—C7	121.61 (17)	С16—С17—Н17А	121.2
C5—C6—C7	119.59 (17)	С18—С17—Н17А	121.2
C8—C7—C6	108.29 (14)	C19—C18—C17	120.9 (2)
С8—С7—Н7А	110.0	C19-C18-H18A	119.5
С6—С7—Н7А	110.0	C17—C18—H18A	119.5
С8—С7—Н7В	110.0	C20—C19—C18	120.3 (2)
С6—С7—Н7В	110.0	С20—С19—Н19А	119.8
H7A—C7—H7B	108.4	C18—C19—H19A	119.8
N1—C8—C9	123.14 (16)	C19—C20—C21	120.1 (2)
N1—C8—C7	118.42 (16)	C19—C20—H20A	120.0
C9—C8—C7	118.25 (15)	C21—C20—H20A	120.0
O1—C9—N3	122.23 (16)	C16—C21—C20	118.2 (2)
O1—C9—C8	125.41 (17)	C16—C21—H21A	120.9
N3—C9—C8	112.36 (13)	C20—C21—H21A	120.9
N2	123.91 (16)		
C8—N1—N2—C10	0.0 (2)	C11—N3—C10—S1	-1.28 (19)
C15—O4—N4—N5	-0.1 (2)	C12—S1—C10—N2	4.33 (16)
O4—N4—N5—C14	0.5 (2)	C12—S1—C10—N3	-176.91 (12)
O4—N4—N5—C16	179.66 (14)	C10-S1-C12-C13	87.66 (14)
C6—C1—C2—C3	0.0 (3)	S1—C12—C13—O2	-7.7 (2)
C1—C2—C3—C4	-1.3 (3)	S1—C12—C13—C14	171.37 (13)
C1—C2—C3—Cl1	177.98 (17)	N4—N5—C14—C15	-0.7 (2)
C2—C3—C4—C5	1.7 (3)	C16—N5—C14—C15	-179.67 (17)
Cl1—C3—C4—C5	-177.58 (17)	N4—N5—C14—C13	-175.56 (16)
C3—C4—C5—C6	-0.8 (3)	C16—N5—C14—C13	5.5 (3)
C2—C1—C6—C5	0.8 (3)	O2-C13-C14-N5	-0.6 (3)
C2—C1—C6—C7	-173.70 (19)	C12-C13-C14-N5	-179.66 (16)
C4—C5—C6—C1	-0.4 (3)	O2—C13—C14—C15	-174.35 (19)
C4—C5—C6—C7	174.22 (19)	C12—C13—C14—C15	6.6 (3)
C1—C6—C7—C8	94.1 (2)	N4—O4—C15—O3	179.13 (17)
C5—C6—C7—C8	-80.3 (2)	N4—O4—C15—C14	-0.28 (19)
N2—N1—C8—C9	0.8 (3)	N5-C14-C15-O3	-178.7 (2)
N2—N1—C8—C7	-174.08 (15)	C13—C14—C15—O3	-3.9 (4)
C6—C7—C8—N1	91.90 (19)	N5-C14-C15-O4	0.54 (18)
C6—C7—C8—C9	-83.27 (19)	C13—C14—C15—O4	175.34 (16)
C10—N3—C9—O1	176.61 (15)	N4—N5—C16—C17	-122.28 (19)
C11—N3—C9—O1	4.5 (2)	C14—N5—C16—C17	56.7 (3)

C10—N3—C9—C8	-3.8 (2)	N4—N5—C16—C21	54.0 (2)
C11—N3—C9—C8	-175.91 (14)	C14—N5—C16—C21	-127.0 (2)
N1—C8—C9—O1	-179.33 (17)	C21-C16-C17-C18	-1.0 (3)
C7—C8—C9—O1	-4.4 (2)	N5-C16-C17-C18	175.10 (19)
N1—C8—C9—N3	1.0 (2)	C16-C17-C18-C19	-0.3 (4)
C7—C8—C9—N3	175.98 (14)	C17—C18—C19—C20	1.7 (4)
N1—N2—C10—N3	-2.9 (2)	C18—C19—C20—C21	-1.8 (4)
N1—N2—C10—S1	175.76 (12)	C17—C16—C21—C20	0.8 (3)
C9—N3—C10—N2	5.0 (2)	N5-C16-C21-C20	-175.31 (19)
C11—N3—C10—N2	177.45 (16)	C19—C20—C21—C16	0.6 (4)
C9—N3—C10—S1	-173.73 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C7—H7B····O2 ⁱ	0.97	2.52	3.429 (3)	157
C11—H11A…S1	0.96	2.12	2.7577 (17)	122
C11—H11B…N1 ⁱⁱ	0.96	2.36	3.066 (2)	130
C11—H11B···N2 ⁱⁱ	0.96	2.40	3.0304 (19)	123
C11—H11C···O1 ⁱⁱⁱ	0.96	2.07	3.021 (2)	169

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, -*y*, -*z*.

Fig. 1

Fig. 2